If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-120x+240=0
a = 12; b = -120; c = +240;
Δ = b2-4ac
Δ = -1202-4·12·240
Δ = 2880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2880}=\sqrt{576*5}=\sqrt{576}*\sqrt{5}=24\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-24\sqrt{5}}{2*12}=\frac{120-24\sqrt{5}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+24\sqrt{5}}{2*12}=\frac{120+24\sqrt{5}}{24} $
| (1,10)m=2 | | (14,4)m=-1 | | (8,2)m=3 | | 2(n-2)=4n+1 | | (3,10)m=-2 | | 5(3x-7)=4(2x-5)=8 | | 2k^2−52=20 | | 6g^2+42=-6 | | 3h^2-51=0 | | 30x-5(x-3)=1 | | 84=6(-8m-2) | | (10x+4)+(10x+4)+(10x+4)+(10x+4)+(10x+4)+(10x+4)+(10x+4)+(10x+4)+(10x+4)=1800 | | (10x+4)+(10x+4)+(10x+4)+(10x+4)+(10x+4)+(10x+4)+(10x+4)+(10x+4)+(10x+4)+(10x+4)+(10x+4)=1800 | | y-6.6=5.4 | | (10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)=1800 | | (8/10)=(x/16) | | 8/10=x/16 | | 1.8=x/16 | | (10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)=150 | | y-12=41 | | (10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)(10x+4)=15- | | 2(3x–15)=4x–18 | | 123=(2x+18) | | 123=2x+18 | | m/(-8)=0 | | -7e=70 | | X^3-33x+90=0 | | 9.5(2f-2)=100 | | q/2=q-4/30 | | 12x+8x=32+8 | | 5x–26=2x-14 | | x+1/2x+2x+5=180 |